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Abstract. It is argued that the preservation of algebraic
equivalence between the Allen and Laidler bond-energy
schemes for nonconjugated alkenes logically determines
that the Allen scheme should apply to a classical
structure of a conjugated hydrocarbon exactly as it
stands, i.e. no additional parameters are needed. Ex-
tending the requirement of equivalence to conjugated
alkenes implies that, in the Laidler scheme, the bond
energy of the pure single CC bond in a conjugated
system is a combination of the bond-energies of the
semiconjugated and normal CC single bonds:
E(C4—Cq4) =2E(Cq—C) — E(C—C). This result is a
deduction and is not an independent hypothesis. The
equivalence of the two schemes for conjugated hydro-
carbons is demonstrated numerically, by calculating the
resonance energies of some selected molecules by both
methods.
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1 Introduction

The traditional measure [1] of the resonance energy (RE)
of a conjugated molecule is the difference between the
observed atomisation enthalpy, AH,, and the value of
AH, obtained by applying a bond-energy scheme to
a classical structure. Since the classical structure of a
resonating molecule does not exist by definition, REs
can be criticised for not being empirical quantities. They
are nonetheless interesting from a theoretical point of
view and the concept of RE in the traditional sense is
often invoked for the interpretation of other, strictly
empirical definitions of RE.

There is, however, a related criticism which could be
made of the traditional RE and which is the concern of
this article. REs are not well defined by the above pre-
scription, because there is no agreed way of extending
the application of bond-energy schemes from noncon-
jugated molecules to the hypothetical structures of

conjugated molecules. For example, the Laidler scheme
[2] requires an additional parameter, E(Cq—Cy), for the
energy contribution of the single bond which connects
two nonresonating double bonds. In the absence of
molecules known to contain such single bonds, the value
of E(Cq—Cq) cannot be determined by the usual ther-
mochemical method of fitting calculated values of AH,
to observed values.

Estimates of E(C4—Cgy), in relation to other bond
energies, were made long ago [3, 4] by combining ther-
mochemical data with assumptions about the detailed
electronic structure of bonds (e.g. m= bond orders, hy-
bridisation). More recently [5] assumptions of a similar
kind were used to estimate the RE of butadiene directly,
from a (spectroscopically determined) barrier to rota-
tion. The result of this study differs from the RE of
butadiene as inferred from the earlier work [3, 4] by
more than 5kcalmol ™.

In a quite different approach, REs can be defined
empirically — and they should then be called stabilisation
energies — by identifying them with the enthalpy changes
in certain chemical reactions. Classical structures and
bond energies then have no part in the calculation of the
stabilisation energy, but they can be involved in its in-
terpretation. For example, a stabilisation energy could
be defined as the enthalpy change in a reaction where a
conjugated hydrocarbon combines with » ethane mole-
cules to give a saturated molecule plus n ethenes. In this
case, however, questions arise as to how much of the
enthalpy change is due to loss of conjugation and how
much is due to changes in the nature of the single bonds
[3]. These questions lead back to the concepts, and to the
problems, of the traditional approach.

An important empirical approach [6, 7] which focuses
specifically on the conjugation energy uses the enthalpy
changes in homodesmotic reactions. These are rear-
rangement reactions in which the number of bonds of
each formal type does not change. The homodesmotic
stabilisation energy (HSE) of a molecule with n C4—Cyq
bonds may then be defined as (minus) the enthalpy
change in the homodesmotic reaction where the molecule
of interest is produced from reagents which include, apart
from nonresonating molecules, » butadiene molecules.



For an important class of molecules, i.e. homoaro-
matic species, there is an approximate relationship be-
tween HSEs and the REs determined by the Laidler
method:

HSE (molecules) ~ RE (molecule)
— nRE (butadiene) . (1)

This relation shows that the HSE is not a convenient
explanation of the stability of a molecule and indeed is
not a molecular property, unless the RE of butadiene
really is zero. The question as to whether butadiene itself
derives any stabilisation from conjugation is very old [3]
and comes back to the problem of determining
E(C4—Cy).

REs are conceptually more convenient and theoreti-
cally more interesting than empirical stabilisation ener-
gies; however, these advantages cannot be realised until
REs are better defined in thermochemical terms. The
present article aims to show that conjectural elements in
the application of bond-energy schemes to the classical
structures of conjugated molecules can be eliminated by
purely logical considerations. The requirement of alge-
braic equivalence [8] between the Allen [9] and the
Laidler [2] bond-energy schemes determines how both
schemes should apply to classical structures. There are
no new parameters. Firstly, however, elements of the
Laidler scheme will be recapitulated.

2 The Laidler scheme

This scheme distinguishes different types of single CC
and CH bonds according to whether the carbon atoms
involved in the bond are singly or doubly bonded to
other atoms. It has become usual to think of this
classification in terms of hybridisation. Thus, the bond
energies E(Cq—C) and E(C—C) refer to sp’—sp’ and
sp’—sp® bonds, respectively. The elusive E(Cq—Cq)
parameter refers to an sp>—sp? bond. The CH bonds
are differentiated both by the hybridisation of the C
atom and by the number of H atoms joined to it. Thus,

E(C—H),, E(C—H), and E(C—H), are the energies of
primary, secondary and tertiary CH bonds at an sp’
carbon, while £(C4q—H), and E (Cq—H), refer to the two
kinds of CH bond at an sp* carbon. Hybrldlsatlon is
used here simply as a way of referring to bonds which
make different contributions to the estimated AH,. It
is not meant to suggest a precise description of the
electronic structure of a bond. Hybridisation in this
sense was used — with reservations — by Dewar and
Schmeising [3].

The values of these parameters as determined by Cox
and Pilcher [8] from the “best” group method [10] pa-
rameters using the equivalence relationships are shown
in Table 1. Because the parameters in Table 1 have been
widely used and because the purpose of the present work
is methodological, the bond energies have not been re-
vised to take account of the latest values of certain
formation enthalpies, including that of gaseous carbon.

The Laidler classification of bonds is identical to that
used in the HSE method. It is therefore easy to deduce
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Table 1. Laidler parameters (298 K) from Ref. [8]. For an

explanation of the symbols see the text

Symbol Energy/kcal mol™!
E(C—C) 85.48

E(C—H), 98.19

E(C—H), 97.27

E(C—H), 96.53

E(C=C) 133.00

E(Cq—H), 101.19

E(Cq—H), 100.53

E(C4—C) 90.07

E(C4—Cy) ?

Eq. (1) by first expressing the enthalpy change for the
appropriate homodesmotic reaction in terms of the
atomisation enthalpies of the participating molecules
and then expressing the latter quantities in terms of
Laidler bond energies and (where appropriate) REs. The
bond-energy terms cancel out, so Eq. (1) is independent
of the particular values chosen for the bond energies
and, in particular, is independent of E(Cq—Cq). This
cancellation was, of course, the main reason for adopt-
ing the HSE approach. Equation (1) is not exact, be-
cause the Laidler method does not reproduce exactly the
atomisation enthalpies of the nonresonating molecules
involved in the homodesmotic reactions. In partlcular
AH, for propene is overestimated by 0.13 kcalmol™!
using the parameters in Table 1.

The various attempts to estimate E(Cq—Cq) have
been discussed elsewhere [8, 11] and only one approach
need be mentioned here. If the vinyl groups in 1,3-but-
adiene are rotated relative to each other about the cen-
tral bond then the overlap between the p orbitals on
carbon atoms 2 and 3 vanishes when the angle of twist is
90°. The barrier to rotation (measured from the trans
structure) is known to be 7.2kcalmol™! from Raman
spectroscopy [12]. George et al. [5] identify this barrier
with the conjugation energy (i.e. RE) of butadiene, and
this implies a value of 91.1kcal mol ™" for E(Cd—Cd)
assuming that the other bond energies are those given in
Table 1. It seems wrong, however, to use a nonplanar
structure as a model for classical butadiene. Put another
way, it seems unlikely that the whole of the barrier is due
to the eﬁects of conjugation; therefore, the value of
91.1 kcalmol ™! is here regarded as a lower limit.

The idea that the classical structure for a conjugated
molecule contains a new type of single CC bond, for
which no thermochemical model is suggested by non-
conjugated molecules, arises from a literal interpretation
of the Laidler scheme in terms of hybridisation. This
idea is brought into question by the Allen scheme, which
recognises the state of coordination of the carbon
centres but not their hybridisation.

3 The Allen scheme

This scheme has been shown by Cox and Pilcher [§8] to be
algebraically equivalent to the Laidler scheme for
nonconjugated molecules. This result is more interesting
because the Allen scheme does not recognise different
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types of single CC and CH bonds; in considering the
interactions between bonds and between nonbonded
centres, the possibility of recognising carbon centres in
different states of hybridisation is actually suppressed.
According to the Allen Scheme, there are only
three types of bond in alkenes, self-evidently designated
by their energy parameters B(C—C), B(C—H) and
B(C=C). Interactions between bonds emanating from
the same centre are then introduced: I'(CCC) is the
interaction between two single bonds; I'(CC4Cy) is the
interaction between a single and a double bond.

,“'_\\ — T~
cC—*— ¢ — C

C C >

C

I'(CCC) I(CCyCy)

In alkanes there are three interactions I'(CCC) at a
tertiary centre and six at a quaternary. There would be
two interactions I'(CC4Cy) in isobutene.

In the monoalkenes there appear to be, in addition to
I'(CCC), two other types of interaction between single
bonds: one where the central atom is sp? hybridised and
the other where one of the extreme atoms is sp”> hybri-
dised.

C
/ - ~o
I C———C c 4 C C —
‘)/
C
I(CC'4C) (ccCaq)

In the above notation Cj indicates a double- bonded
centre, where the double bond is not involved in the pair
interaction. In fact, both the above interactions are
implicitly assumed by Cox and Pilcher to be the same as
I'(CCC). Any other assumption would destroy equiva-
lence with the Laidler scheme.

Alkadienes appear to introduce a new interaction
between single bonds, T'(C,CC)), where both the
extreme atoms are sp® hybridised:

— C

I(C4¢CCo

Now the algebraic equivalence of the Allen and Laidler
schemes has not been shown for the alkadienes, but it is
possible to demonstrate the equivalence numerically by
calculating AH, for 1,4-pentadiene by both methods. A
value of 1246.46kcalmol™! is obtained by the Allen
method, assuming that I'(C;CC};) = T'(CCC). The value
obtained by the Laidler method is 1246.50 kcal mol ™.
Equivalence would be lost if I'(C,CC};) were given a
different value from I'(CCC).

Now, when one comes to consider conjugated struc-
tures, it would be logically inconsistent with what has
been said so far if a “new” type of interaction,
[(CCy4Cq), were to be recognised by giving it a value
different from I'(CCy4Cy).

——~ —
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(C'4CqCq) I'(CC4Cq)

Cox and Pilcher appear to entertain the idea that these
interactions could be different, although they did not
consider the possibility of C; centres in monoalkenes.
The requirement I'(C;C4Cq) = T'(CCyqCq) implies that
the Allen scheme be applied to 1,3-butadiene exactly as
it stands.

The same line of argument can be extended to the
triangular interactions between non-bonded centres. The
interaction between the trio of atoms around a single-
bonded centre is designated A(CCC), while the interac-
tion between the trio around a double-bonded centre is
A(CCCy).
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There are four interactions A(CCC) around a quater-
nary carbon. Now the alkadienes appear to introduce
the possibility of a “new” interaction A(CC,C};) between
the trio of atoms around a saturated centre, where two
of the peripheral atoms are sp” hybridised.

A(CC'4Cq)

The notation A(CC};C}) indicates that the double bonds
on the primed centres are outside the triangle. Once
again, the numerical equivalence of the Allen and
Laidler schemes is maintained (e.g. in the case of
3-methyl-1,4-pentadiene), only by the assumption
A(CCC)) = A(CCC).

Finally, considering triangular interactions in conju-
gated systems, it would be inconsistent with previous
arguments to recognise new interactions A(C4C,C}) and
A(C4CjC) as being different from A(C4CC).
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To sum up: the Allen scheme for nonconjugated
alkenes would not be equivalent to the Laidler scheme
if C centres were differentiated from plain C. The



Table 2. Allen parameters (298 K) from Ref. [8]. For an explana-
tion of the symbols see the text

Symbol Energy/kcal mol™
B(C—H) 99.30
B(C—C) 78.84
B(C=C) 140.55
I'(CCO) 2.58
I['(CCy4Cy) 5.35
A(CCC) -0.55
A(CCCy) -1.25

absence of recognisable C}; centres means that the Allen
scheme applies to classical, conjugated structures
without introducing any parameters beyond those in
Table 2.

4 Equivalence of the schemes for classical structures

Cox and Pilcher [8] demonstrated the equivalence of the
Allen [9] and Laidler [2] schemes for alkanes and alkenes
by showing that both schemes were equivalent to the
group method of Benson and Buss [10]. Since the Allen
scheme applies to classical structures as it stands, there
must be a relationship between existing Laidler param-
eters which will ensure that the Laidler scheme gives the
same results as the Allen scheme for classical structures.
This relationship is discovered by equating a Laidler
expression for AH, with an Allen expression for each of
the following molecules: ethane, ethene, tetramethyleth-
ene and 2,3-dimethyl-1,3-butadiene. These molecules
were chosen simply to make the algebra easy, and the
results of the derivation which follows do not depend on
a particular choice. The molecule 2,3-dimethyl-1,3-
butadiene was chosen as the exemplar of conjugation
because choosing butadiene itself would have required
an additional equation (for 2-butene).

Ethane: 1/2E(C—C) +3E(C—H),

= 1/2B(C—C) + 3B(C—H) (2)
Ethene: 1/2E(C=C) + 2E(Cq—H),

= 1/2B(C=C) + 2B(C—H) (3)
Tetramethylethene:

1/2E(C=C) + 6E(C—H), + 2E(C4—C)
= 1/2B(C=C) + 6B(C—H) + 2B(C—C)
+ 2I'(CC4Cy) 4+ T'(CCC) + A(C4CC) 4)
2,3-Dimethyl-1,3 butadiene:
E(C=C) +2E(C4q—H), + E(C4—C) + 1/2E(C4—C4)
+3E(C—H), = B(C=C) +2B(C—H) + B(C—C)
+1/2B(C—C) + 3B(C—H)
+2I'(CC4Cy) + I'(CCC) + A(C4CC)
(5)
Now, Eq. (5) minus Eq. (4) gives
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1/2E(C=C) 4+ 2E(C4—H), — E(C4—C)
+ 1/2E(Cd—Cd)—3E(C—H)p
=1/2B(C=C) — B(C—H) — 1/2B(C—C) (6)

and Eq. (6) minus Eq. (3) yields
— E(C4—C) 4+ 1/2E(C4—Cq) — 3E(C—H)p

= —1/2B(C—C) — 3B(C—H). (7)
Finally, Eq. (7) plus Eq. (2) gives
—E(C4—C) 4+ 1/2E(C4—Cq4) + 1/2E(C—C) =0
or
2E(C4—C) — E(C—C) — E(C4—C4) =0 (8)

The result is very familiar in as much as it has often been
assumed in calculations as a convenient physical hy-
pothesis. Here it is a logical consequence of equivalence.
Any other assumption about E(C4—Cq4) would lose
equivalence with the Allen scheme. Of course, it might
be argued that this loss of equivalence would not matter
if it led to the Laidler scheme having more empirical
content; however, this empirical content is lacking. So
far as the author is aware, there is no thermochemical
fact which falsifies Eq. (8).

The value of E(C4—Cq4) as determined from the pa-
rameters in Table 1 and Eq. (8) is 94.66kcalmol '
Possibly because of rounding in the published Laidler
and Allen parameters, this value does not quite give
the same estimated values of AH, for the conjugated
molecules in Table 3. Excellent agreement is obtained,
however, using 94.63 kcalmol .

The RE of butadiene as indicated in Table 3 is
3.6kcalmol~!. This value happens to be in close agree-
ment with the empirical resonance energy of butadiene,
as determined by the difference between the heat of hy-
drogenation of butadiene and that of two molecules of
I-butene. The agreement would be exact if the bond-
energy scheme(s) exactly reproduced the formation
enthalpies of 1-butene and butane. This result follows
from Eq. (8), as does the fact that for the rearrangement

Table 3. Observed [8] and estimated atomisation enthalpies
(kcal mol™" at 298 K)

Molecule AH, (obs) AH, (est) AH, (est) AH, (obs)
Laidler®  Allen —AH, (est)
1,3-Butadiene 970.09 966.45 966.44 3.6
Benzene 1318.19  1286.07  1286.07 32.1
Toluene 1601.11  1570.18  1570.19 30.9
Diphenylmethane ~ 2807.51° 274576  2745.76 61.7
1,2-Diphenylethane 3089.60  3025.78  3025.78 63.8
Triphenylmethane 4015.9 3923.36  3923.36 92.5
Biphenyl 2528.27 246571  2465.74 62.6
1,3,5-Triphenyl 4951.40 482499  4825.08 126.4
benzene
Naphthalene 2089.75  2037.02  2037.05 52.7
Anthracene 2858.40  2787.97  2788.03 70.4
Phenantrene 2864.10  2787.97  2788.03 76.1
trans-Stilbene 2985.08  2894.40  2894.43 90.6

 Calculated using E(Cq—Cq) = 94.63 kcal mol™!
b Calculated using the formation enthalpy given in Ref. [16]
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CH,=—CH—CH=CH, + CH;—CHj

AH is the same as the RE of butadiene to within
0.3 kcalmol ™.

5 Discussion

The entries in the last column of Table 3 should, strictly
speaking, be called conventional stabilisation energies
(CSEs), after Cox and Pilcher [8]. These quantities are
the same as REs provided that the conjugated molecule
is not destabilised to any extent by strain or steric
interactions. The molecules in Table 3 were chosen
primarily to demonstrate the numerical equivalence of
the two schemes for a sufficient number of different
conjugated structures.

REs are now quite narrowly defined in terms of
thermochemical data, the only latitude being in the
choice of the “best” parameters of the group method
[10] from which both the Laidler and Allen parameters
have been derived [8]. This latitude is small compared
with the margin of uncertainty which hitherto came
from regarding E(C4q—Cq4) as an extraneous parameter.

No assumptions have been made about the detailed
nature (e.g. molecular geometry, electronic structure) of
a classical structure. Only the structural formula has
been assumed, as in Pauling’s original approach [1].
The bond-energy schemes employed here, however,
are much more sophisticated than Pauling’s. The belief
that using sophisticated schemes requires additional
parameters beyond those determined from the ther-
mochemistry of nonresonating molecules has been
shown to be incorrect.

Although considerations of molecular geometry and
electronic structure have not been involved in the cal-
culation of REs, such considerations are the only means
of investigating whether the results are reasonable. For
example, the external validity of Eq. (8) is currently
under investigation by the author using bond-energy/
bond-length relationships. These calculations are essen-
tially a reinvestigation of methods pioneered by Dewar
and Schmeising [3] and by Bernstein [13].

Another possible check on the results is suggested by
theoretical studies on biphenyl. This molecule could
provide a more convenient model of the pure sp*—sp’
bond than twisted (90°) butadiene. The suggestion that
there is no resonance between the ring systems of bi-
phenyl in the electronic ground state is not new [14]. It
can be understood by first imagining biphenyl to be
planar (Dy,) and then considering that the (12) = mo-
lecular orbitals (MOs) of biphenyl are linear combina-
tions of the bonding 7 MOs of two benzene molecules.
The n bond order in the central bond is exactly zero
when the lowest six 7 MOs are fully occupied. Recently
it has been shown that model (D,;) wavefunctions of the
latter kind can give a qualitative interpretation of the
electronic spectrum of biphenyl, as calculated ab initio at
the CASPT2 level [15]. Less sophisticated (STO-3G)
calculations in this laboratory have shown that the
Mulliken bond orders in the rings of biphenyl are almost

identical to those of benzene.! The central bond order is
1.03 for the planar molecule and it drops to 1.01 at the
(experimental) dihedral angle of 44°. The = contribution
to the central bond order was only 0.04 in the planar
molecule (with the central bond length at 1.489 A).
There is thus a reasonable presumption that the RE of
biphenyl should be twice the RE of benzene.

The results in Table 3 show that the CSE of biphenyl
is 1.6kcalmol™' less than the CSE of two benzene
molecules. A possible interpretation is that the RE
of biphenyl is indeed twice the RE of benzene, but
that steric repulsion between the hydrogens in the 2
and 2’ positions destabilises biphenyl to the extent of
1.6 kcalmol™'. This estimate of the steric effect agrees
well with the value (1.4kcalmol™') given by George
et al. [6]. However, other evidence is needed that a
substituted benzene ring carries the same RE as benzene
itself.

Table 3 indicates that the RE of toluene is
1.2 kcalmol ™! less than that of benzene, i.e. the opposite
of what might be expected from the idea of hypercon-
jugation. This difference between the REs of toluene and
benzene is not large, but it is significant when compared
with typical failures of the bond-energy schemes to re-
produce the AH, values of nonresonating molecules. A
possible explanation of the differences between the REs
of benzene and toluene is that the CH bond in benzene
has a greater bond energy than the ‘‘classical” value
E(C4—H), and/or that the C—CH; bond in toluene
has a smaller bond energy than E(C4q—C). The same
explanation would lead one to predict that diphenyl
methane has the same RE as two toluenes and that
triphenylmethane has the same RE as three toluenes.

These predictions are confirmed to a remarkable de-
gree by Table 3, provided that the latest value [16] of the
formation enthalpy of diphenylmethane is used to de-
termine the observed value of AH,. Since the systems
being compared have the same number of C4—Cy4 bonds,
the agreement has nothing to do with the value of
E(C4—Cq). Very similar conclusions, therefore, can be
reached by the HSE method. The HSE of diphenylme-
thane can be shown to be equal to the sum of the HSEs
of toluene and ecthylbenzene. The HSE of benzene is
1.3 kcalmol™" more than the HSE of toluene.

Two other results in Table 3, however, cannot be
explained so neatly either by the conjecture that the ring
systems are like toluene or that they are like benzene.
The CSE of 1,2-diphenylethane is closer to the CSE of
two benzenes than it is to two toluenes and the CSE of
1,3,5-triphenylbenzene is only 2 kcalmol™' less than the
CSE of four benzenes. The latter result suggests either
that 1,3,5-triphenylbenzene has slightly more resonance
stabilisation in each ring system than biphenyl or that
the molecule is subject to less steric destabilisation (for
each link between the rings) than biphenyl, both of
which are hard to explain.

In order to use the formation enthalpy of biphenyl as
an empirical check on the value of E(C4—Cy), it would
be necessary to know whether the ring systems carry the

! Calculations using the SPARTAN suite of programs by the
author and M J Bearpark.



same RE as benzene or whether they are more like tol-
uene. To this end, it would probably be worthwhile to
look at the whole problem again using thermochemical
data at 0 K. In this way bond energies would not carry
contributions from rotation and thermally excited
vibrations, and in the case of biphenyl the contribution
of the torsional motion to AH, would be reduced.
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